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Abstract

Annuity puzzle refers to the inconsistency between theoretical results

and empirical data on annuity demand. In this paper, we construct a mon-

etary general equilibrium dynastic model with money and annuities. There

are two dimensions of an asset: return and liquidity. The bequest motive is

an important factor that lowers liquidity of annuity. When the liquidity of

annuities is too low, it would generate a theoretical result in which the an-

nuity accounts for almost zero percent in the retirement wealth. A higher

inflation rate reduces the value of money, and a stronger bequest motive re-

duces the liquidity of the annuity. Consequently, a higher bequest motive

and a lower inflation rate reduce the demand for the annuity, which gener-

ates the theoretical result being consistent with empirical data.
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1 Introduction

The problem of saving behavior is always presented in the theater of macroe-

conomists’ screenplays. Saving is a means to shift income by diversified assets in

order to smooth consumption intertemporally or, more importantly, arrange for

the time with no labor income. Substantial studies have focused on how agents

facing retirement allocate their wealth, and the most common background set-

ting to deal with this issue is a life-cycle model with uncertainty of lifetime.1 The

annuity, a financial asset which ties down with the specific individual and pro-

vides returns every period until the holder dies, plays a critical role in retirement

wealth.

The annuity makes its debut in the economic theoretical model by Yaari (1965),

which points out that a risk-averse agent, facing longevity risk only and having no

bequest motive with separable utility function setting, would choose to dispose

all wealth in the annuity since it pays higher returns than the bond if the holder is

alive. While the life-cycle model suggests that putting retirement wealth into the

life annuity is optimal, the reality displays by no means in correspondence with

the theoretical result. Modigliani (1986) is the first to sketch the inconsistency

between theoretical results and empirical data in annuities, currently known as

the annuity puzzle. Modigliani (1986) mentions: "[I]t is a well-known fact that

annuity contracts, other than in the form of group insurance through pension

systems, are extremely rare. Why this should be so is a subject of considerable

current interest. It is still ill-understood." To understand the discrepancy be-

tween theoretical results and empirical data, imagine that there is a consol and

an annuity in the market. Assume that prices of a consol and an annuity are

identical. A bond guarantees periodic returns forever while the income stream

of an annuity ends at the time when the annuitant dies. Under the no-arbitrage

condition, the payment rate of an annuity should be higher than the interest rate

1The life-cycle model is able to characterize the hump-shape stylized lifetime income pattern
and impose stochastic factors in any period.
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of a consol.2 That is, the annuity dominates the consol in the rate of return and

should be attractive to retirees. Most theoretical results so far are consistent with

the intuition mentioned above; however, the empirical data shows the opposite

outcome: lack of voluntary annuitization. Echoing Modigliani (1986), Johnson

et al. (2004) tabulates from Health and Retirement Study and shows that private

annuities only account for one percent of total wealth.

The main contribution of this paper is to present a general equilibrium mon-

etary model and generate results that are more consistent with facts. We develop

the model based on Lagos and Wright (2005), in which the annuity is an alter-

native asset to money. The general equilibrium feature of the model allows us to

determine endogenously the prices, the rate of return and liquidity of money and

the annuity. We apply the idea of dynastic utility from Barro (1974) to capture

the concept of altruism toward descendants. The dynastic model setting empha-

sizes that agents being generation after generation rather than a representative

agent living forever. In the case that agents care about their children, they have

the bequest motive.

The main features of the model are as follows. Each period is divided into

three subperiods and resembles an agent’s lifetime: working stage, young stage,

and retirement stage. Unlike partial equilibrium models, we allow agents to work

to accumulate wealth before retirement. This paper characterizes the behavior of

insurance companies, hence endogenizes the price and the payout rate of the an-

nuity. With the general equilibrium framework, we are able to clarify the factors

that affect the benefits of money and annuities, and therefore characterize the

demand for both assets. We show that the current model is capable of generating

less or no demand for the annuity. The existence of survival shocks creates liq-

uidity differentials between money and annuities: annuities are not available to

finance consumption if the agent dies. The demand for the annuity would vanish

if the payout rate could not compensate for illiquidity of the annuity. We present

2If an annuity offers $5,000 per period as the holder is alive on a $100,000 premium, the
annuity payment rate is 5%.
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conditions in each equilibrium and the analysis on the effect of the inflation rate

and the degree of altruism.

In this model, we inject nominal asset, money, so that we can discuss the ef-

fect of the inflation rate since it influences the value of money and the annuity

differently. Because forward-looking agents in the dynastic model take their chil-

dren’s utility into consideration, the higher inflation rate lowers the future value

of money hence less consumption of their child through money. In the situation

that agents partially annuitize their wealth, the higher inflation rate raises the

annuity demand since money is less valuable. We also prove that when agents

have the higher bequest motive in which they partially annuitize their wealth,

it amplifies illiquidity of the annuity and agents annuitize less. In the dynastic

model, as money always has the ability to finance children’s consumption while

the annuity loses the ability when the agent dies early, the stronger bequest mo-

tive causes relatively greater loss on the inability to finance children’s consump-

tion of the annuity because agents care more about their children. Agents prefer

money to the annuity under the higher bequest motive, hence less demand for

the annuity.

1.1 Literature Review

Since the discrepancy between theoretical results, in which people should annu-

itize a large fraction of their wealth, and empirical data, in which people barely

annuitize their wealth, is obvious, macroeconomists attempt to make the theoret-

ical result agree with the empirical data. Davidoff et al. (2005) analyze the op-

timal retirement portfolio problem by means of the dual method of utility max-

imization: expenditure minimization. By relaxing the assumption of separable

utility function, full annuitization is still optimal with no bequest motive under

a complete market. Even if agents have the bequest motive and face the medical

expense risk in an incomplete market, the optimality still displays partial annu-

itization more than two-third of retirement wealth. Davidoff et al. (2005) also
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mention that the uninsured medical expense causes lower survival rate, hence

lower demand for the annuity.

Economists also resort to psychological and behavioral explanations other

than rational models. Brown (2007) states that private information of health con-

ditions leading to higher annuity prices, pre-existing annuitization, risk sharing

among family members, and bequest motives would reduce the demand for the

annuity. Some possible psychological or behavioral factors such as thought of

the annuity contract as a complex financial contract and the illusion of losing

control of a long-term contract may influence the demand for the annuity. Be-

sides, Brown et al. (2008) suggest that annuities are more attractive when people

view them as consumption payments rather than investment earnings. Benartzi

et al. (2011) mention that people might not save enough to buy annuities at re-

tirement and many households live by Social Security rather than by annuity

incomes. On the other hand, Poterba et al. (2011) argue that medical expense

shocks and family structure shocks make the annuity less appealing because the

liquidation value of annuities is low. Instead of annuities, housing equity serves

as a precautionary asset. However, some economists still strive for the theoreti-

cally consistent result. Davidoff (2009) shows that long-term care insurance and

the annuity are complementary since long-term care insurance could help ex-

tend one’s life and make the annuity more attractive, but house equity crowds

out long-term care insurance and the annuity because house equity accounts for

a large proportion of wealth and retirees liquidate their house equity when they

need long-term care. Yogo (2016) shows that stocks are positively correlated to

health while health expenditure and share in housing are negatively correlated to

health. Even considering an incomplete annuity market, bequest motives, back-

ground risk and default risk in a life-cycle model, annuitizing large fraction of

wealth remains optimal in Peijnenburg et al. (2016), which leads to the title: "the

annuity puzzle remains a puzzle."

Literatures so far could give explainations for "less" annuity demand, but not
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for "almost zero" annuity demand, except Lockwood (2012), which resorts to the

bequest motive as the key factor for extremely low annuity demand. He consid-

ers a partial equilibrium life-cycle model to depict that sufficiently large loads

on the annuity price would eliminate the annuity demand. In his model, the

loads, wealth at age 65, and pre-existing annuity incomes are exogenously given.

However, in reality, people could withdraw pension in a lump sum at age 65.

Moreover, he considers only the decision to allocate wealth in consumption and

bequest after retirement, but he ignores agents’ forward-looking consideration

before retirement to accumulate more wealth. Different from Lockwood (2012),

who generates low annuity demand in a model where the annuity price and the

fraction of pre-existing annuitization wealth are exogenously given, we provide

a general equilibrium monetary model in which forward-looking agents endoge-

nously choose their wealth accumulation and asset allocation, and all the prices

and liquidity are endogenously determined. We are able to discuss how the in-

flation rate and the bequest motive affect the payout rate and the demand for the

annuity, which are absent in Lockwood (2012).

The paper proceeds as follows. Section 2 specifies the model. Section 3 derives

the equilibrium conditions from sellers’ and buyers’ decision problems. Section 4

discusses all equilibria and comparative static analysis. Section 5 provides some

numerical results. Section 6 discusses the different effects of the inflation rate be-

tween this paper and a life-cycle partial equilibrium model. Section 7 concludes.

All proofs and details are contained in the Appendix.

2 The Basic Model

The basic model follows Lagos and Wright (2005), Telyukova and Wright (2008),

and Guerrieri and Lorenzoni (2009). Time is discrete and continues forever.

Each period is divided into three subperiods, in which agents trade consump-
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tion goods in the frictionless centralized market.3 All goods in each subperiod

are nonstorable and perfectly divisible. There is a [0,2] continuum of agents at

the beginning of each period: the seller and the buyer account for a unit measure

respectively. Buyers only consume and sellers only produce in the first subpe-

riod and the second subperiod. All agents can consume and produce in the third

subperiod.

2.1 Buyer

A buyer may be born in the second or third subperiod. They face an idiosyncratic

survival shock, ρ ∈ (0,1), in the beginning of the second subperiod. With prob-

ability ρ, a buyer survives in the second subperiod, and then dies at the end of

the second subperiod and his offspring will be a new born in the third subpe-

riod. With probability 1− ρ, a buyer passes away at the beginning of the second

subperiod. His child will catch up and be idle in the second subperiod, and start

to work, consume and adjust portfolio in the third subperiod.4 Let βi ∈ (0,1) be

the discount factor between subperiod i and i−1 within a buyer’s lifetime, where

i = 1,2. The degree of altruism of a buyer is βa ∈ [0,1) , which discounts the

utility of children into that of the buyer. Combining conditions above, we have

β1β2βa < 1.

Buyers in subperiod i have utility ui(qi) from qi consumption, where i = 1,2.

In the third subperiod, buyers produce, consume to get utility U (X) − h from

X goods and h labor hour, and adjust their asset holding of money and annu-

ities. This is the standard quasi-linear utility function setting following Lagos

and Wright (2005). Assume U (0) = 0, U ′(0) =∞, U ′(X) > 0, U ′′(X) < 0, ui(0) = 0,

u′i(0) =∞, u′i(qi) > 0, u′′i (qi) < 0, where i = 1,2. Suppose utility of a buyer’s child

3Different from Lagos and Wright (2005), Telyukova and Wright (2008), and Guerrieri and
Lorenzoni (2009), there is no decentralized market in this model.

4The idle child could be thought of as the babyhood, in which we assume that the child does
not have the ability to involve in the market actions.
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is Vc, the dynastic utility function of a buyer is

U (X)− h+ β1u1(q1) + β1β2u2(q2) + β1β2βaVc.

Figure 1 shows the timeline of a buyer.

Figure 1: Timeline of Buyers

2.2 Seller

A seller lives for three subperiods certainly. They are born in the first subperiod

and die at the end of the third subperiod. They produce and do not consume in

the first subperiod and the second subperiod, but like buyers, a seller can produce

and consume in the third subperiod. Let βs
i ∈ (0,1) be the discount factor between

subperiods i and the last subperiod within a seller’s lifetime, where i = 2,3. Let

the degree of altruism of a seller be βs
a ∈ (0,1). Combining conditions above, we

have βs
2β

s
3β

s
a < 1.

Sellers incur disutility ci(q
s
i ) from producing qsi units of consumption goods,

where i = 1,2. Assume ci(0) = 0, c′i(q
s
i ) > 0, c′′i (qsi ) ≥ 0. In the third subperiod, a

seller gets utility U (Xs)− hs from Xs goods and hs labor hour. Suppose utility of

a seller’s child is V s
c , the dynastic utility function of a seller is

−c1(qs1)− βs
2c2(qs2) + βs

2β
s
3[U (Xs)− hs] + βs

2β
s
3β

s
aV

s
c .
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Figure 2 shows the timeline of a seller.

Figure 2: Timeline of sellers

We assume that all buyers and sellers do not own record-keeping and en-

forcement technology, so credit plays no role in the economy even though there

are frictionless centralized markets; i.e., every transaction must be quid pro quo.

To accomplish transactions in the first two subperiods, buyers must carry as-

sets in exchange for consumption goods. Without loss of generality, we assume

β1 = β2 = βs
2 = βs

3 = βs
a = β in the following discussion.

The government is the sole issuer of money. money has no intrinsic value, yet

it plays an essential role as a means of payment in the economy, more pecisely, in

the first and second subperiod, where credit is not feasible. We assume money is

perfectly divisible and storable. There is no storage cost or transaction cost when

storing or using money. money stock evolution is determined exogenously at a

gross rate γ by the government. That is, Mt+1 = γMt. In the third subperiod,

money is injected to buyers by lump-sum transfer if γ > 1, or withdrawn from

buyers through taxation by the government if γ < 1. The aggregate transfer or

taxation at time t is Tt = (γ − 1)Mt. Let φt denote the value of money in terms of

goods in the third subperiod. To simplify the notation, we use the index x+1 and

x−1 to represent a variable corresponding to the next period and the last period,

respectively. We focus on stationary equilibria of the economy, which means that

the real value of money is always constant. To be more specific, φM = φ+1M+1,

which implies φ
φ+1

= M+1
M = γ .
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2.3 Insurance company

There are perfectly competitive insurance companies selling annuities in the third

subperiod. They receive incomes from selling annuities to invest in the invest-

ment technology in the third subperiod of period t and obtain real returns cer-

tainly in the third subperiod of period t + 1.5 Assume that insurance companies

have a technology to track annuitants. If the annuitant is alive in the second

subperiod of t + 1, they would receive bearer claims as annuity incomes from in-

surance companies. We assume that insurance companies have a commitment

technology so that they will not default on the redemption of claims. The holder

of claims could exchange claims for payoffs from the issuing insurance compa-

nies in the third subperiod of t + 1. Figure 3 shows the timeline of an insurance

company.

Figure 3: Timeline of insurance companies

The annuity has a main difference against money: receiving the payout amount

when the annuitant is alive. The annuity is perfectly divisible. Suppose each unit

of annuity is sold at φt goods. In the second subperiod of t+ 1, insurance compa-

nies repay claims worth (1+ia) unit of money per unit annuity to alive annuitants.

We assume that claims mature at the third subperiod of period t+ 1. Specifically,

any holder of claims must redeem money from insurance companies in the third

5There are risk-based capital requirements for insurers in the United States. In this model, the
investment return are certain, so the default probability is zero.
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subperiod of period t + 1, or claims would lose efficacy.6

Following Freeman and Kydland (2000) and Li (2011), we assume insurance

companies take annuity incomes to invest in the investment technology with a

constant rate of return, R. Assume that the investment technology is only ac-

cessible to insurance companies. Investing one unit of goods in the technology

would turn into R ≥ 1 goods in the next third subperiod.7 In addition, insur-

ance companies incur a management cost when holders of claims redeem their

payoff. Define that each annuity redeemed in period t incurs the cost of φθ(A−1)

goods, where A−1 is the number of annuities sold by companies in period t − 1.

We assume θ(0) = 0, θ′(A−1) > 0, and θ′′(A−1) ≥ 0.

Insurance companies have zero profit because of the perfectly competitive

market setting. If the return on investment is higher than the return on hold-

ing money, which means R > 1
γ , insurance companies invest all incomes in the

technology. In this case, insurance companies sell A−1 unit of annuities, invest

φ−1A−1 unit of goods to get real return worth Rφ−1A−1 goods in the third sub-

period of next period. If the return on investment is lower than the return on

holding money, which means R ≤ 1
γ , insurance companies would hold all in-

come as money. Without loss of generality, we consider R ≥ 1
γ in the following

discussions. There are only ρA−1 unit of annuities being redeemed, so the total

management cost is ρA−1φθ(A−1) goods. We derive the payment rate from the

zero-profit condition, which is

ρφ(1 + ia)A−1 = Rφ−1A−1 − ρA−1φθ(A−1). (1)

The left-hand side of (1) represents the total value of claims in terms of goods

which will be redeemed; the right-hand side is the fund of the insurance company

6Insurance companies receive investment returns in the third subperiod, so they have to issue
claims in the second subperiod. We assume insurance companies have commitment technology
and the investment technology is riskless, they will not default. In this case, buyers use claims as
means of payment and leave them as bequests and sellers will accept claims in transactions since
holders of claims can always redeem them back in the third subperiod.

7We could have assumed that the investment rate of return was a function of real inputs;
however, it would not affect the main result.
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which could be used to repay claims. If ia ≤ 0, no agent would purchase the

annuity; i.e., A−1 = 0. The existence of active insurance companies implies that

the payout rate of the annuity should be positive; i.e., ia > 0. For our purpose, we

consider only equilibrium when ia ≥ 0. From (1), the payout rate of the annuity

when A−1 > 0 is

1 + ia =
γR

ρ
−θ(A−1). (2)

The annuity payment rate, ia, is affected by the inflation rate, γ , the survival rate

of buyers, ρ, the return on the investment technology, R, and the management

cost, θ(A−1).

Because the utility function is quasi-linear in the third subperiod and agents

are born and live for two to four subperiods, this model delineates an economy

resembling the life-cycle model with representative agents having the bequest

motive and incorporate insurance companies while keeping distribution of asset

portfolio analytically tractable.

Before we proceed, we review the timing of events and trading arrangement.

In the first subperiod of period t, buyers spend their money holding to buy goods.

At the beginning of the second subperiod, buyers face the survival shock. Buyers

who are alive receive claims as annuity incomes from insurance companies and

they use money left from the first subperiod and claims in exchange for goods.

Sellers in the third subperiod redeem the claims that they received from buyers

in the second subperiod. All agents determine their portfolios of money and the

annuity in the third subperiod of t−1 where everyone can produce and consume.

New born sellers enter in the first subperiod and new born buyers enter in the

second subperiod or the third subperiod.

3 Optimal choices for sellers and buyers

We focus on stationary equilibria. Let Wi(mi , ai) with a portfolio (mi , ai) and

Wj(mj ,bj) with a portfolio (mj ,bj) denote the expected value function of a buyer,
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and W s
i (ms

i , a
s
i ) with a portfolio (ms

i , a
s
i ) and W s

j (ms
j ,b

s
j ) with a portfolio (ms

j ,b
s
j ) de-

note the expected value function of a seller when entering subperiod i or j, where

i = 1, and j = 2,3. Denote that bj is the number of claims that a buyer holds and

bsj is the number of claims that a seller holds when entering subperiod j, where

j = 2,3. Notice that a1 is the number of annuities bought by a buyer and as1 is

the number of annuities bought by a seller. Besides, b2 is the number of claims

received by a buyer from insurance companies when he is alive so that b2 = a1, b3

is the the remaining number of claims as bequests by a buyer after consuming in

the second subperiod, and bsj is the number of claims received by a seller through

exchange, where j = 2,3.

3.1 Seller’s decision

Sellers are born in the first subperiod of period t, but insurance companies sell

annuities in the third subperiod of period t − 1. Moreover, since sellers die cer-

tainly at the end of the third subperiod of period t, it is impossible for them and

their heirs to receive annuity incomes in period t + 1. In this case, sellers have

no incentive to buy the annuity in the third subperiod of period t, which implies

as1 = 0. Sellers would not receive claims in first-subperiod transactions, hence

bs2 = 0.

3.1.1 The third subperiod

Sellers only consume in the third subperiod where they could produce as well.

A seller carries ms
3 money, redeems claims for (1 + ia)b

s
3 units of money, produces

hs goods and consumes Xs goods in the third subperiod.8 Since sellers would

not buy any annuity, they only have to determine the amount of money, ms
1,+1,

bequeathed to heirs. The value function of a seller holding portfolio (ms
3,b

s
3) to

8A seller produces in the first subperiod in exchange for money and produces in the second
subperiod in exchange for money and annuity claims.
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the third subperiod is

W s
3(ms

3,b
s
3) = max

Xs,hs,ms
1,+1

{
U (Xs)− hs + βW s

1,+1(ms
1,+1)

}
s.t. Xs = hs +φ[ms

3 + (1 + ia)b
s
3]−φms

1,+1.

(3)

Define that zs = φ[ms
3 + (1 + ia)b

s
3] is the real value of the portfolio held by a seller

when entering the third subperiod. Substitute hs from the budget constraint and

rearrange (3):

W s
3(zs) = zs + max

Xs,ms
1,+1

{
U (Xs)−Xs −φms

1,+1 + βW s
1,+1(ms

1,+1)
}
.

Define

W s
3(0) = max

Xs,ms
1,+1

{
U (Xs)−Xs −φms

1,+1 + βW s
1,+1(ms

1,+1)
}
,

and we get

W s
3(zs) = zs +W s

3(0). (4)

This is the linearity of W s
3(zs). Since the utility function is quasi-linear, the seller’s

bequest decision, ms
1,+1, is irrelevant to the value of zs. The first-order conditions

are

U ′(Xs) = 1, (5)

φ ≥ βW s
1m,+1(ms

1,+1), = if ms
1,+1 > 0, (6)

where W s
1m,+1(ms

1,+1) is the marginal utility of an additional unit of money as

bequest to the child. We get Xs = X∗ from (5), which implies Xs reaches the first-

best level. The envelope conditions are

W s
3m =

∂W s
3(zs)

∂ms
3

= φ, (7)

W s
3b =

∂W s
3(zs)

∂bs3
= φ(1 + ia). (8)
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3.1.2 The first and second subperiod

Let pi denote the nominal price of qi in terms of money, i=1,2. A new-born seller

produces in the first two subperiods and all revenues will be left to consume in

the third subperiod. Therefore a new-born seller in the first subperiod solves

W s
1(ms

1) = max
qs1,q

s
2

{
−c1(qs1)− βc2(qs2) + β2W s

3 (φ(ms
1 + p1q

s
1 + p2q

s
2))

}
. (9)

After applying the linearity property, the seller’s problem becomes

W s
1(ms

1) = max
qs1,q

s
2

{
−c1(qs1)− βc2(qs2) + β2 [φ(ms

1 + p1q
s
1 + p2q

s
2) +W s

3(0)
]}
.

The solution (qs1,q
s
2) satisfies

c′1(qs1) = β2φp1, (10)

c′2(qs2) = βφp2. (11)

In this case, we derive the nominal prices of goods from (10) and (11) in the first

and second subperiod, where

p1 =
c′1(qs1)
β2φ

, (12)

p2 =
c′2(qs2)
βφ

. (13)

The envelope condition is

W s
1m =

∂W s
1(ms

1)
∂ms

1
= β2φ. (14)

Plug (14) into (6) and we get

φ ≥ β3φ+1. (15)

Conditions (12) and (13) show that sellers should be indifferent producing in

three subperiods. Bequeathing or not is indifferent to sellers since the cost equals
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the benefit of leaving bequest, which is γ = β3. If γ > β3, sellers would not

bequeath their children, hence ms
1,+1 = 0. Condition (15) also shows that the

inflation rate has a lower bound, which is γ ≥ β3.

3.2 Buyer’s decision

In contrast with sellers, each buyer faces an idiosyncratic survival shock. To de-

termine the behavior of buyers, we start from the third subperiod, in which they

start their lives.

3.2.1 The third subperiod

A new-born buyer inherits m3 money and b3 claims in the third subperiod. The

bequest is worth m3 + (1 + ia)b3 unit of money. A new-born buyer produces h

goods, consumes X goods, and chooses the portfolio (m1,+1, a1,+1) carried to the

next period. He solves the following problem:

W3(m3,b3) = max
X,h,m1,+1,a1,+1

{
U (X)− h+ βW1,+1(m1,+1, a1,+1)

}
s.t. x = h+φ[m3 + (1 + ia)b3] +φT −φm1,+1 −φa1,+1.

(16)

Define that z = φ [m3 + (1 + ia)b3] is the real value of the bequest inherited by a

buyer. Substitute h from the budget constraint and rearrange (16):

W3(z) = z+ max
X,m1,+1,a1,+1

{
U (X)−X +φT −φm1,+1 −φa1,+1 + βW1,+1(m1,+1, a1,+1)

}
.

Therefore

W3(z) = z+W3(0), (17)

where

W3(0) = max
X,m1,+1,a1,+1

{
U (X)−X +φT −φm1,+1 −φa1,+1 + βW1,+1(m1,+1, a1,+1)

}
.
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This is the linearity of W3(z). Since the utility function is quasi-linear, the buyers’

portfolio decision, (m1,+1, a1,+1), is irrelevant to the value of z. The first-order

conditions are

U ′(X) = 1, (18)

φ ≥ βW1m,+1(m1,+1, a1,+1), = if m1,+1 > 0, (19)

φ ≥ βW1a,+1(m1,+1, a1,+1), = if a1,+1 > 0, (20)

where W1m,+1(m1,+1, a1,+1) and W1a,+1(m1,+1, a1,+1) are the marginal utility of an

additional unit of money and annuity taken into the first subperiod of next pe-

riod respectively. We get X = X∗ from (18). Note that new-born buyers possess

different portfolios at the beginning of the third subperiod because their parents

might be dead or alive in the second subperiod. If a buyer’s parent dies at the

beginning of the second subperiod, the bequest left to the buyer is (m3,0); if a

buyer’s parent is alive in the second subperiod, the bequest is (m3,b3). The first-

order conditions (19) and (20) guarantee that the portfolio choice of (m1,+1, a1,+1)

is irrelevant to the value of third subperiod consumption, X. In this case, the

distribution of the asset portfolio of buyers is degenerate at the beginning of each

period. The envelope conditions are

W3m =
∂W3(z)
∂m3

= φ, (21)

W3b =
∂W3(z)
∂b3

= φ(1 + ia). (22)

3.2.2 The first and second subperiod

A buyer entering the first subperiod has the portfolio, (m1, a1), which is used to

finance consumption in the first two subperiods. The buyer’s expected lifetime
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value function of the first subperiod is

W1(m1, a1) = max
q1,q2
{u1(q1) + ρβ [u2(q2) + βaW3 (φ(m1 − p1q1 + (1 + ia)a1 − p2q2))]

+ (1− ρ)ββaW3(φ(m1 − p1q1))} (23)

s.t. φp1q1 ≤ φm1 (24)

φp2q2 ≤ φ[m1 − p1q1 + (1 + ia)a1]. (25)

A buyer faces a survival shock at the beginning of the second subperiod. With

probability ρ, the buyer is alive. He receives annuity payoffs, consumes q2, and

leaves m1−p1q1 +(1+ia)a1−p2q2 to his offspring. With probability 1−ρ, the buyer

is dead and leaves m1 − p1q1 units of money to his offspring. Rearrange (23) by

making use of the linearity property of W3:

W1(m1, a1) = max
q1,q2
{u1(q1) + ρβu2(q2) + ββaφ(m1 − p1q1)

+ ρββaφ[(1 + ia)a1 − p2q2] + ββaW3(0)}.

We apply the Lagrange multiplier method to solve the buyer’s problem. Let λ1

and λ2 denote the Lagrange multipliers of budget constraints (24) and (25), re-

spectively, in the first and second subperiod. The Lagrange function is

L =u1(q1) + ρβu2(q2) + ββaφ(m1 − p1q1)

+ ρββaφ[(1 + ia)a1 − p2q2] + ββaW3(0)

+λ1φ(m1 − p1q1) +λ2φ(m1 − p1q1 + (1 + ia)a1 − p2q2).

(26)

The first-order conditions are

u′1(q1) = φp1(ββa +λ1 +λ2), (27)

ρβu′2(q2) = φp2(ρββa +λ2). (28)
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The complementary slackness conditions are

λ1φ(m1 − p1q1) = 0, (29)

λ2φ(m1 − p1q1 + (1 + ia)a1 − p2q2) = 0. (30)

Condition (27) clarifies that consuming additional q1 tightens the constraint of

the second subperiod and the constraint of the first subperiod simultaneously.

This is because the second-subperiod budget constraint (25) depends on the resid-

ual money left from the first subperiod. Condition (29) implies that if the buyer

does not spend all money in the first subperiod, we get λ1 = 0.

For the completeness of the model, the market clearing conditions of con-

sumption goods in first two subperiods are

q1 = qs1, (31)

ρq2 = qs2. (32)

The market clearing condition of the annuity is

a1 = A−1. (33)

Other than the case of γ = β3, sellers never bequeath their heirs. Without loss

of generality, we assume that money is held by buyers only. The market clearing

condition of money is

m1 = M−1. (34)

3.3 The optimal portfolio choice for buyers

In order to determine the optimal portfolio, we derive the marginal value of the

value function in terms of money and the annuity. Plug conditions (27) and (28)
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into the envelope conditions, they can be written as 9

W1m = φ(ββa +λ1 +λ2), (35)

W1a = φ(1 + ia)(ρββa +λ2). (36)

Holding an additional unit of money helps a buyer loosen constraints in the first

two subperiods and leave more bequests to his child. Holding an additional unit

of annuity benefits a buyer by loosening the constraint in the second subperiod

and bequeathing his child conditional upon being alive. An asset has two dimen-

sions: return and liquidity.10 Specifically, liquidity of an asset in this economy

includes its ability to finance the buyer’s first subperiod consumption, the second

subperiod consumption, and child’s consumption.11

A buyer must use money to finance his consumption in the first subperiod

since u′1(0)→∞, which leads to m1 > 0. In contrast, a buyer could use money or

annuity incomes to finance consumption in the second subperiod. A stationary

equilibrium satisfies φ−1
φ = γ . We lag one period of (19) and (20) to combine with

conditions (35) and (36). Then, we obtain

λ1 +λ2 =
γ − β2βa

β
, (37)

λ2 ≤
γ − ρ(1 + ia)β2βa

β(1 + ia)
, = if a1 > 0. (38)

Condition (38) shows that if total benefit of annuities on relaxing the constraint,

φβ(1 + ia)λ2, and that of leaving bequests, φρ(1 + ia)β2βa, is not higher than the

cost φ−1, there is no demand for the annuity. Combine (12), (13), (27), (28), (37),

9See the proof in Appendix A.
10Although the ex-ante return of annuity is uncertain, we use the term "return" on annuity to

refer to the amount of annuity payout.
11"[L]iquidity–the extent to which an asset can facilitate exchange as a means of payment..." (Li

et al. (2012)) defines liquidity. In our context, liquidity refers to the same context, which is the
ability of an asset to exchange consumption for buyers when they are young and old, and for their
descendants.
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and (38), we obtain

1
β2 (λ1 +λ2) =

u′1(q1)
c′1(q1)

−
βa
β

=
γ − β2βa

β3 , (39)

1
ρβ2λ2 =

u′2(q2)
c′2(ρq2)

−
βa
β
≤
γ − ρ(1 + ia)β2βa

ρ(1 + ia)β3 , = if a1 > 0. (40)

After simplifying, we have

u′1(q1)
c′1(q1)

=
γ

β3 , (41)

u′2(q2)
c′2(ρq2)

≤
γ

ρ(1 + ia)β3 , = if a1 > 0. (42)

Condition (41) implies that buyers carry money to the point at which the marginal

benefit of an addition unit of money, β3φ
u′1(q1)
c′1(q1) , equals the marginal cost, φ−1.12

Condition (42) implies that if buyers have the annuity demand, they would pur-

chase up to the point at which the marginal benefit of an additional unit of an-

nuity, β3φρ
(1+ia)u′2(q2)

c′2(ρq2) , equals the marginal cost, φ−1.13 If the marginal cost of the

annuity is always larger than the marginal benefit, they have no demand for the

annuity.

4 Equilibrium

Definition 1. A stationary equilibrium is a list of value functions (Wi ,W
s
i ), buyers’

choice (X,h,q1,q2,mi , a1,b2,b3), sellers’ choice (Xs,hs,qs1,q
s
2,m

s
i , a

s
1,b

s
2,b

s
3), where i =

1,2,3, insurance companies’ annuity sales volume A−1, prices (p1,p2), a sequence of

12The procedure is similar in Li and Li (2013). Given the market price p1, a buyer with an

additional unit of money buys 1
p1

units of q1, which generates utility u′1(q1)
p1

. The additional money
costs φ−1. To compare the benefit and cost at the same time point, we discount the benefit one

subperiod and get β u′1(q1)
p1

= φ−1. After converting p1 to c′1(q1)
β2φ

from (12), it becomes β3φ
u′1(q1)
c′1(q1) =

φ−1, which implies u′1(q1)
c′1(q1) = γ

β3 .
13Given the market price p2, a buyer with an additional unit of annuity could buy 1+ia

p1
units

of q2 when he is alive, which generates expected utility ρ
(1+ia)u′2(q2)

p2
. The additional annuity

costs φ−1. To compare the benefit and cost at the same time point, we discount the benefit

two subperiod and get β2ρ
(1+ia)u′2(q2)

p2
= φ−1. After converting p2 to c′2(ρq2)

βφ from (13), it becomes

β3φρ
(1+ia)u′2(q2)

c′2(ρq2) = φ−1, which implies u′2(q2)
c′2(ρq2) = γ

ρ(1+ia)β3 .
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money value {φt}, and the payout rate ia that solve (3), (9), (16), and (23) given the

inability of sellers to purchase the annuity and satisfy market clearing conditions (31)−

(34), constant real value of money, and insurance companies’ zero profit condition (2).

The tightness of constraints are displayed through λ1 and λ2. We focus on

possible stationary equilibria categorized through the tightness of constraints

and the availability of annuities, which are unconstrained equilibrium with (λ1 =

0,λ2 = 0), full annuitization equilibrium with (λ1 > 0,λ2 = 0), full annuitiza-

tion equilibrium with (λ1 > 0,λ2 > 0), partial annuitization equilibrium with

(λ1 = 0,λ2 > 0), and pure cash equilibrium with (λ1 = 0,λ2 > 0). Since the con-

sumption in the first subperiod could only be financed by money, we will focus

on the means of payment decision in the second subperiod. For the analysis, we

specify the lower bound of the inflation rate, γ , in the following lemma.

Lemma 1. In a stationary equilibrium, γ ≥max{β2βa,β
3,ρ(1 + ia)β2βa}.

Lemma 1 results from (15), (37), and (38). It prevents buyers and sellers from

accumulating money and the annuity infinitely.

4.1 Unconstrained equilibrium

We begin by considering the unconstrained equilibrium, in which constraints in

the first and second subperiod are unbinding; i.e., λ1 = λ2 = 0.

Proposition 1. An unconstrained stationary equilibrium exists if and only if γ =

β2βa. Under an unconstrained stationary equilibrium, it achieves the first-best alloca-

tion, (q1,q2) = (q∗1,q
∗
2), if and only if βa = β.14

proof. See Appendix A.

The difference of the altruism degree between sellers and buyers is a factor

of inefficiency.From (12) and (13), sellers with higher time preference are willing

14Under the more general setup on discount factors such that we reserve notations β1, β2, βa,
βsa, βs2, and βs3, the condition would be β2βa = βs2β

s
3. Under the assumption of β2 = βs2 = β, the

condition becomes βa = βs3. It is clearer that the key factor is how much a seller cares about
himself in the third subperiod. The logic is stated in the main text.
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to sell goods only under a higher price since consumption in the third subpe-

riod is less valuable. If β is smaller, prices on q1 and q2 are higher, hence less

consumption.

Proposition 2. Suppose βa ≥ β. Under an unconstrained equilibrium:

1. If a1 > 0, (q1,q2) solves

u′1(q1)
c′1(q1)

=
βa
β
,

u′2(q2)
c′2(ρq2)

=
βa
β
.

The portfolio (m1, a1) solves

β2βaR

ρ
−θ (a1) =

1
ρ
,

m1 = M−1.

The payout rate, ia, satisfies

1 + ia =
1
ρ
.

2. If a1 = 0, (q1,q2) solves

u′1(q1)
c′1(q1)

=
βa
β
,

u′2(q2)
c′2(ρq2)

=
βa
β
.

The portfolio (m1, a1) solves

m1 = M−1,

a1 = 0.
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The payout rate, ia, satisfies

ia = 0.

Under an unconstrained equilibrium, agents are indifferent to finance con-

sumption through money and the annuity in the second subperiod under a1 > 0.

Money and the annuity could not loosen constraints in the first two subperiods;

therefore the ability of leaving bequests to offsprings remains to be the only con-

sideration.

Lemma 2. In an unconstrained equilibrium with a1 > 0, ρ(1 + ia) = 1.

The condition ρ(1 + ia) = 1 shows that the return of the annuity, (1 + ia), offsets

its lower liquidity which is caused by ρ in financing children’s consumption. The

ex ante expected return from the annuity equals the return of money. In this

situation, it is indifferent to bequeath through the annuity or money. If ρ(1+ ia) <

1, the annuity is dominated by money, which causes the annuity to vanish in the

economy and ia = 0.

Proposition 3. Under an unconstrained equilibrium with a1 > 0, if the survival rate,

ρ, increases, the payout rate, ia, and the demand for the annuity, a1, decrease.

proof. See Appendix A.

Given the rate of return of the investment technology, higher survival rate im-

plies that there are more annuitants split the return, hence less payout amount for

annuitants. Lower payout amount decreases the annuity demand while higher

survival rate makes the annuity more attractive. In equilibrium, ρ(1 + ia) = 1

holds, so the decreasing number of annuities results from the zero-profit condi-

tion of insurance companies when ρ increases.

4.2 Constrained equilibrium

In a constrained equilibrium, at least one resource constraint in the first and the

second subperiod is binding. From lemma 1 and proposition 1, we have γ > β2βa.
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We categorize constrained equilibria by the portfolio choice into full annuitiza-

tion, partial annuitization, and pure cash equilibrium.

4.2.1 Full annuitization equilibrium

A full annuitization equilibrium depicts the situation that all consumption in the

second subperiod, which can be interpreted as the after-retirement stage in this

model, is fully financed by annuity income. In this equilibrium, q1 is financed

by money only, and q2 is financed by the annuity. Since all money is used in

the first subperiod, the constraint in the first subperiod is binding, which means

λ1 > 0. In this case, buyers must finance consumption in the second subperiod

through annuities. Given the fact of the coexistence of money and the annuity,

we characterize the full annuitization equilibrium in the following proposition.

Proposition 4. Suppose γ > β2βa. In a full annuitization equilibrium:

1. If λ2 = 0, the payout rate, ia, solves

ρ(1 + ia)β
2βa = γ.

The quantity (q1,q2) solves

u′1(q1)
c′1(q1)

=
γ

β3 ,

u′2(q2)
c′2(ρq2)

=
βa
β
.

The price φ and the portfolio (m1, a1) solves

c′1(q1)
β2 q1 = φm1,

m1 = M−1,

1 + ia =
γR

ρ
−θ(a1).

2. If λ2 > 0, the price φ, the payout rate, ia, the quantity (q1,q2), and the portfolio
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(m1, a1) solve

u′1(q1)
c′1(q1)

=
γ

β3 ,

u′2(q2)
c′2(ρq2)

=
γ

ρ(1 + ia)β3 ,

c′1(q1)
β2 q1 = φm1,

c′2(ρq2)
β

q2 = φ(1 + ia)a1,

m1 = M−1,

1 + ia =
γR

ρ
−θ (a1) .

Lemma 3. In a full annuitization equilibrium, ρ(1 + ia) > 1.

proof. See Appendix A.

A buyer could have financed consumption in the second subperiod through

money and the annuity. In a full annuitization equilibrium, buyers choose to

finance consumption in the second subperiod and bequeath through the annuity.

This implies that the annuity dominates money after the first subperiod. Lemma

3 states a necessary condition of a full annuitization equilibrium: the expected

return of the annuity must be higher than the return of money. It shows that the

payout rate has a lower bound: 1
ρ . The survival rate, ρ, is a source of illiquidity.

This implies the rate of return dominance: the return must surpass the illiquidity

of the annuity.

Recall γ ≥ ρ(1 + ia)β2βa from lemma 1, which is equivalent to φ−1 ≥ φρ(1 +

ia)β2βa. The expected return of the annuity is φρ(1 + ia)β2βa with the cost φ−1.

Under γ = ρ(1 + ia)β2βa, the cost and the expected return of the annuity are iden-

tical. This results in the efficient consumption level through the annuity in the

second subperiod, which is λ2 = 0. We get γ > ρ(1+ ia)β2βa in a full annuitization

equilibrium with λ2 > 0 from (38). Under γ > ρ(1 + ia)β2βa, the expected value of

the annuity is lower. Thus, buyers are willing to consume less than the efficient
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level in the second subperiod.

Proposition 5. Under a full annuitization equilibrium with λ2 > 0:

1. A change in the inflation rate has real effects in a full annuitization equilbrium:
∂q1
∂γ < 0, ∂q2

∂γ < 0, ∂φ
∂γ < 0, ∂ia

∂γ > 0, and ∂φ(1+ia)a1
∂γ < 0 if R is sufficiently large.

2. The altruism degree of buyers does not affect prices and allocations.

proof. See Appendix A.

R should be sufficiently large to sustain higher ia, which is 1 + ia > 1
ρ from

lemma 3. Higher inflation devaluates money, lowers φ and causes q1 and q2 to

decrease. Higher inflation also raises the payout rate since investment returns

of insurance companies are goods, which converts to more money under higher

inflation. The decreasing of φ and the increasing of ia generate opposite effects

on the annuity demand. Although the impact on the number of annuities is inde-

terminate, we could infer that the real value of the annuity, φ(1 + ia)a1, decreases

since annuity incomes are all used to finance q2 and q2 decreases. Higher infla-

tion tightens the constraints in the first and the second subperiod. Since q1 and

q2 decrease at the same time, the social welfare decreases as the inflation rate

increases.

A buyer would not bequeath in a full annuitization equilibrium because they

run out of money in the first subperiod and annuity incomes in the second sub-

period. A change in the altruism degree of buyers would not increase bequests at

the margin, so it does not affect prices and allocations.

4.2.2 Partial annuitization equilibrium

A partial annuitization equilibrium refers to the circumstances that consumption

in the second subperiod is financed by money and the annuity. Since money will

be left to the second subperiod, the constraint in the first subperiod does not

bind, which means λ1 = 0. The λ2 = 0 case is the unconstrained equilibrium, so

we focus on the case in which λ2 > 0. Since the annuity is active, we know (38)
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and (40) hold at equality. From (37), we obtain λ2 = γ−β2βa
β . We characterize the

paritial-annuitization equilibrium as follows.

Proposition 6. Suppose γ > β2βa. In a partial annuitization equilibrium, in which

λ1 = 0, λ2 > 0 with the annuity being active, (q1,q2) solves

u′1(q1)
c′1(q1)

=
γ

β3 ,

ρ

[
u′2(q2)
c′2(ρq2)

−
βa
β

]
=
γ − β2βa

β3 .

The price φ, the payout rate, ia, and the portfolio (m1, a1) solve

c′1(q1)
β2 q1 +

c′2(ρq2)
β

q2 = φ[m1 + (1 + ia)a1],

m1 = M−1,

1 + ia =
γR

ρ
−θ (a1) ,

1 + ia =
γ

γ − (1− ρ)β2βa
.

A buyer carries money and the annuity after the third subperiod, which means

total benefits of both assets are identical since they all cost φ−1. In contrast to

the full annuitization economy, here money helps nothing in loosening the con-

straint in the first subperiod; therefore money and the annuity compete in the

following aspects: returns, ability in financing q2, and ability in financing con-

sumption of offsprings. The unbinding constraint in the first subperiod implies

that the benefit of money left for q2 and bequests equals the benefit of consuming

q1 marginally. When a buyer is alive, he could finance consumption in the second

subperiod and bequeath through both money and the annuity. When a buyer is

dead, he could not consume, where money and the annuity are equally useless

in terms of financing q2. Moreover, if a buyer is dead, he could not obtain annu-

ity incomes, so money has an additional function as bequests while the annuity

lose efficacy, which is the relative illiquidity for the annuity. Money is a rela-
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tively liquid asset while the annuity is a relatively high return asset. In a partial

annuitization equilibrium, the higher return of the annuity in financing q2 and

financing children’s consumption must compensate for the contingent bequest

under probability ρ. The relative return offsets the relative liquidity between the

annuity and money.

Lemma 4. In a partial annuitization equilibrium, ρ(1 + ia) < 1.

proof. See Appendix A.

Since money lacks the ability of loosening the first-subperiod constraint, the

payout rate need not be large in which the relative return offsets the relative

illiquidity of the annuity. Lemma 4 restricts the payout rate of the annuity so

that the benefit of the annuity would not overtake the benefit of money.

Proposition 7. Under a partial annuitization equilibrium,

1. A change in the inflation rate has real effects in a partial annuitization equil-

brium: ∂q1
∂γ < 0, ∂q2

∂γ < 0, ∂a1
∂γ > 0, ∂φ

∂γ < 0, and ∂ia
∂γ < 0.

2. A change in the degree of altruism of buyers has real effects in a partial annuiti-

zation equilbrium: ∂q1
∂βa

= 0, ∂q2
∂βa

> 0, ∂a1
∂βa

< 0, ∂φ
∂βa

is indeterminate, and ∂ia
∂βa

> 0.

proof. See Appendix A.

Higher inflation devaluates money, in which buyers consume less in q1 and q2.

Higher inflation also raises the payout rate at first because insurance companies

could exchange investment returns for more money. The annuity serves as an

inflation-protected asset to some degree. In this case, the demand for the annuity

increases. The annuity is more attractive and money becomes less valuable.

Unlike a full annuitization equilibrium, the degree of altruism stands in a

niche of liquidity under a partial annuitization equilibrium. The higher degree

of altruism of buyers makes the relative illiquidity of the annuity against money

more severely because there are bequests left to the child when a buyer dies.
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Buyers have incentives to bequeath more, so they are willing to leave more money

after the first subperiod. If a buyer is alive, he could consume more in the second

subperiod from additional money originating from the higher bequest motive, so

q2 increases. This also results in the decreasing demand for the annuity and the

decreasing management cost, which leads to the higher payout rate.

Since money would be left to the second subperiod, there are bequests left

to offsprings if a buyer dies in a partial annuitization equilibrium. Returns and

liquidity play key roles in determining the demand for money and the annuity.

Even if annuities repay higher payout amount than money in the second sub-

period, the uncertainty to be left as bequests might offset the benefit of higher

returns. This is the reason that buyers have less, or almost zero annuity demand.

It is illiquidity that crowds out the annuity demand, even the annuity always has

the dominant return over money.

4.2.3 Pure cash equilibrium

If the rate of return of the annuity is sufficiently low, buyers may not demand

the annuity, and the annuity will vanish in the economy. Then, buyers finance

consumption in the first and the second subperiod all by money. Since money

will be left to the second subperiod, the constraint in the first subperiod never

binds, which means λ1 = 0. We characterize the pure cash economy with λ2 > 0

as follows.

Proposition 8. Suppose γ > β2βa. In a pure cash equilibrium with λ1 = 0 and λ2 > 0,

(q1,q2) solves

u′1(q1)
c′1(q1)

=
γ

β3 ,

ρ

[
u′2(q2)
c′2(ρq2)

−
βa
β

]
=
γ − β2βa

β3 .
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The price φ and the portfolio (m1, a1) = (m1,0) solves

c′1(q1)
β2 q1 +

c′2(ρq2)
β

q2 = φm1,

m1 = M−1.

The payout rate

ia = 0.

In the pure cash economy, the relative illiquidity dominates the relative return

of the annuity against money. The certainty of money to be left to descendants

outweighs the higher return of the annuity. The reason for the zero annuity de-

mand is its inability to bequeath.

Proposition 9. If a buyer does not have the bequest motive, which means βa = 0, the

pure cash equilibrium would not exist.

proof. See Appendix A.

The intuition is that money and the annuity could both finance consumption

when the buyer is alive, which implies the liquidity in financing q2 is identical.

With no bequest motive, even though money could be left as bequests, it plays no

role for buyers. Since it is only the return that matters for buyers in consuming q2,

the annuity with positive payout rate dominates money in the second subperiod.

In this case, the factor of illiquidity of the annuity disappears, so it travels back

to the rate of return dominance situation.

5 Numerical example

We use numerical examples to help us observe more implications about full an-

nuitization equilibrium and partial annuitization equilibrium.
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Figure 4 shows the effect of inflation rate on consumption, the price, the pay-

out rate, and the annuity demand under a full annuitization equilibrium.15 The

result is consistent with the analysis in proposition 5. The effects of the inflation

rate on φ, q1, and q2 are negative because the higher inflation lowers the value

of money, which causes decrease in q1 and q2. Although the increase or decrease

of the annuity depends on the functional form of u1(q1), u2(q2), c1(qs1), c2(qs2),

and θ(A), the key point is that the value of the annuity as a means of payment

in the second subperiod decreases. Notice that the inflation rate may not be too

small since the payout rate would decrease. If the payout rate reaches zero lower

bound, a full annuitization equilibrium does not exist.

The following numerical results display that the annuitization rate is less than

1 percent, which is consistent with the empirical finding in Johnson et al. (2004).

We show the effect of the inflation rate and the degree of altruism on consump-

tion, the price, the payout rate, the annuity demand, and the annuitization rate

under a partial annuitization equilibrium (see Figure 5 and Figure 6).16 Define

annuitization rate to be
φ(1 + ia)a1

φp2q2
,

which denotes the fraction of the consumption q2 financed by the annuity. Em-

pirically, the annuitization rate refers to the share of household income for adults

ages 65 and older made up by the private annuity. In this paper, money serves

as the unique means of payment in the first subperiod, a1
m1+a1

might dilute the

value since a fraction of m1 is not for the retirement stage.17 If a buyer is alive, he

would use all money and annuity incomes to consume in the second subperiod

15In Figure 4, the functional forms are u1(q1) = q
1−σ1
1

1−σ1
, u2(q2) = η

q
1−σ2
2

1−σ2
, c1(qs1) = (qs1)ϵ1

ϵ1
, c2(qs2) =

(qs2)ϵ2

ϵ2
, and θ(A) = δAϵ. The parameter values are σ1 = 0.2, σ2 = 0.2, ϵ1 = 1, ϵ2 = 1, ϵ = 1, δ = 0.0005,

η = 1, R = 1.03, M−1 = 100, β = 0.97, βa = 0.9, γ = 1.016, and ρ = 0.95.
16In Figure 5 and Figure 6, the functional forms are u1(q1) = q

1−σ1
1

1−σ1
, u2(q2) = η

q
1−σ2
2

1−σ2
, c1(qs1) = (qs1)ϵ1

ϵ1
,

c2(qs2) = (qs2)ϵ2

ϵ2
, and θ(A) = δAϵ. The parameter values are σ1 = 0.2, σ2 = 0.2, ϵ1 = 1, ϵ2 = 1, ϵ = 1,

δ = 1, η = 0.5, R = 1.03, M−1 = 100, β = 0.97, βa = 0.3, γ = 1.016, and ρ = 0.9447094. We adopt
some parameters which are widely used in saving literatures.

17For the robustness check, if the annuitization rate is defined as a1
m1+a1

, the analysis is qualita-

tively consistent with φ(1+ia)a1
φp2q2

.
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since λ2 > 0; i.e., the total value of consumption q2 equals the total wealth at the

beginning of the second subperiod. To correspond to the index used in empirical

data, we adopt φ(1+ia)a1
φp2q2

.

In the partial annuitization equilibrium, the inflation rate affects relative re-

turn while the degree of altruism affects relative liquidity. Figure 5 shows that the

effect of the inflation rate on the annuitization rate is positive because the higher

inflation lowers the value of money, φ, then increases the demand for the annuity,

a1, and raises the annuitization rate. Figure 6 shows that the effect of the degree of

altruism on the annuitization rate is negative because it makes the annuity illiq-

uid, then reduces the demand for the annuity, a1, and reduces the annuitization

rate. This also implies that money accounts for a bigger share of the retirement

wealth when the degree of altruism increases. Different from past literatures,

this paper generates the general equilibrium results in which the annuitization

rate is almost zero when there is the bequest motive reducing the liquidity of the

annuity.

6 Discussion: the effect of inflation

We show that a change in the inflation rate does not affect the allocation and real

prices in a life-cycle partial equilibrium economy with bequest motives. Con-

sider a partial equilibrium model in which retirement wealth, the annuity price

and the annuity payoff are exogenous. For simplicity, assume that an agent lives

at most two periods after retirement. He faces a survival shock ρ, which is the

survival rate, after the first period and dies certainly at the end of the second

period. Define that π = ρy
(1+r)(1−λ) is the real value that the agent uses to buy an

annuity in which λ is the load from Lockwood (2012) and y is the real annu-

ity income. Suppose a representative agent maximizes his expected utility after

retirement:

u(c1) + (1− ρ)v(e1) + ρβ[u(c2) + v(e2)]
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subject to

e1 = w −π − c1

e2 = (1 + r)(w −π − c1)− (c2 − y),

where v(e) is utility from e real bequests, r is the real return of an asset, β is the

discount rate, and w is real retirement wealth. Since we are going to discuss the

inflation rate, we need to inject nominal prices into the economy: p1 and p2. The

bequests become

p1e1 = p1(w −π − c1)

p2e2 =
p2

p1
(1 + r)p1(w −π − c1)− p2(c2 − y).

From the Fisher equation, we have nominal interest rate equals

p2

p1
(1 + r) = γ(1 + r),

where γ is the inflation rate. We observe that the inflation rate does not affect

the real value of bequests since the nominal interest rate grows in proportion to

the inflation rate. Suppose there is a government in this economy that raises the

inflation rate, it would not affect any real variable. In this case, the inflation does

not have real effect in life-cycle partial equilibrium economy.

However, in this paper, insurance companies own a real investment technol-

ogy. This implies that the inflation rate has different effects on the returns of

money and the annuity. As long as insurance companies invest fractionally in

real return subjects (e.g., land), the inflation rate will have real effects in the econ-

omy. If there are frictions that make inflation have different effects on the returns

of money and nominal assets, such as bonds, the inflation rate would generate

different effects on the returns of money and the annuity even if insurance com-

panies invest totally in nominal assets. Therefore inflation affects allocation and
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prices of the economy in this paper.

7 Conclusion

In this paper, we point out that the key factor of the low annuity demand is

relative illiquidity of the annuity compared with other assets. Many literatures

rely on the medical expense risk, e.g., Ameriks et al. (2011) and Peijnenburg et al.

(2017), to explain why people would not annuitize all wealth, but they fail to

explain why people annuitize petty wealth or do not annuitize any wealth. We

set aside everything but the survival risk and the bequest motive to generate the

result that the return and liquidity are endogenous. It is the illiquidity of the

annuity which originates from the bequest motive that significantly reduce the

demand for the annuity.

Different from Lockwood (2012) in which the annuity price and a fraction

of pre-existing annuitization wealth are exogenous, the monetary search general

equilibrium model in which prices and quantities are endogenously determined

gives us a comprehensively analytical framework. Although this model is sim-

plified, we are able to clarify each significant characteristic and each mechanism.

The benefits and drawbacks of money and the annuity are clearly characterized.

The suggestion for future research is that we could analyze the effects on policies

(e.g., the annuity loan, the inheritance tax, and the deferred tax on purchasing

annuities), which could be extended in a general equilibrium model of this pa-

per.

This paper has three main contributions. First, it generates a general equilib-

rium model that specifies behaviors of agents and insurance companies clearly,

in which almost no demand for the annuity could be derived under the bequest

motive with the endogenous annuity payout rate. Second, this paper generates

the analytical form, not only numerical solutions, so that it is able to do the qual-

itative analysis in an implicit function form structure. Third, injecting a nominal

asset allows us to discuss the effect of the inflation rate on allocation and prices.

34



Piling up with numerical examples, this paper sheds light on resolving the annu-

ity puzzle.
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Figure 4: The effect of inflation rate in the full annuitization equilibrium
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Figure 5: The effect of inflation rate in the partial annuitization equilibrium

40



Figure 6: The effect of degree of altruism in the partial annuitization equilibrium
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Appendix A

Deviration of envelope conditions in the first subperiod

Differential equation (23) with respect to m1 and a1, we get

W1m =ββaφ+
{
u′1(q1)− ββaφp1

} ∂q1

∂m1
+ [ρβu′2(q2)− ρββaφp2]

∂q2

∂m1

=ββaφ+φp1(λ1 +λ2)
∂q1

∂m1
+φp2λ2

∂q2

∂m1

=ββaφ+φλ1p1
∂q1

∂m1
+φλ2

(
p1

∂q1

∂m1
+ p2

∂q2

∂m1

)
,

W1a =ρββaφ(1 + ia) +
{
u′1(q1)− ββaφp1

} ∂q1

∂a1
+ [ρβu′2(q2)− ρββaφp2]

∂q2

∂a1

=ρββaφ(1 + ia) +φp1(λ1 +λ2)
∂q1

∂a1
+φp2λ2

∂q2

∂a1

=ρββaφ(1 + ia) +φλ1p1
∂q1

∂a1
+φλ2

(
p1

∂q1

∂m1
+ p2

∂q2

∂a1

)
.

Now we only have to worry about the case of λ1 > 0 and λ2 > 0. If λ1 > 0, it

implies that m1 = p1q1. We differentiate both sides with respect to m1 and a1 to

get ∂q1
∂m1

= 1
p1

and ∂q1
∂a1

= 0 respectively. If λ2 > 0, it implies that m1 + (1 + ia)a1 =

p1q1 + p2q2. Differentiate both sides with respect to m1 and a1 to get 1 = p1
∂q1
∂m1

+

p2
∂q2
∂m1

and (1 + ia) = p1
∂q1
∂a1

+ p2
∂q2
∂a1

. Then we obtain equation (35) and (36):

W1m = φ(ββa +λ1 +λ2),

W1a = φ(1 + ia)(ρββa +λ2).

Proposition 1

proof. The first statement is simply the result of (39). Suppose there is an uncon-

strained equilibrium, which means λ1 = λ2 = 0. From (39), we have γ = β2βa.

Suppose γ = β2βa, it is obvious that λ1 = λ2 = 0 since λ1 ≥ 0 and λ2 ≥ 0. The first

statement is proved.

Under an unconstrained equilibrium, we have γ = β2βa and λ1 = λ2 = 0 from

the statement above. It guarantees that βa ≥ β from lemma 1. In this case,
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u′1(q1)
c′1(q1) = u′2(q2)

c′2(ρq2) = βa
β ≥ 1. Suppose q1 = q∗1 and q2 = q∗2, we get u′1(q1)

c′1(q1) = u′2(q2)
c′2(ρq2) = 1,

which means βa = β. Suppose βa = β, we have u′1(q1)
c′1(q1) = u′2(q2)

c′2(ρq2) = 1, which means

q1 = q∗1 and q2 = q∗2.

Proposition 3

proof. From proposition 2, we have ∂ia
∂ρ = −1

ρ2 < 0 and γR−1
ρ = θ(a1). Since a1 > 0, it

guarantees that γR− 1 > 0. It is obvious that ∂a1
∂ρ < 0.

Lemma 3

proof. If λ2 = 0, the proof is complete from lemma 1, proposition 1.

If λ2 > 0, from (37) and equality in (38), we have

λ1 =
γ − β2βa

β
−
γ − ρ(1 + ia)β2βa

β(1 + ia)
> 0

⇒1 + ia >
γ

γ − (1− ρ)β2βa
>

β2βa
β2βa − (1− ρ)β2βa

=
1
ρ
.

Proposition 5

proof. In a full annuitization equilibrium, (q1,q2, a1,φ, ia) satisfies proposition 4.

Define

f1(q1,q2, a1,φ, ia;γ) =
u′1(q1)
c′1(q1)

−
γ

β3 ;

f2(q1,q2, a1,φ, ia;γ) =
u′2(q2)
c′2(ρq2)

−
γ

ρ(1 + ia)β3 ;

f3(q1,q2, a1,φ, ia;γ) =
c′1(q1)q1

β2 −φM−1;

f4(q1,q2, a1,φ, ia;γ) =
c′2(ρq2)q2

β
−φ(1 + ia)a1;

f5(q1,q2, a1,φ, ia;γ) = 1 + ia −
γR

ρ
+θ(a1).
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Let fix denote ∂fi
∂x , where i = 1,2,3,4,5 and x = q1,q2, a1,φ, ia,γ . We have

f1q1
=
u′′1 (q1)c′1(q1)− c′′1 (q1)u′1(q1)

[c′1(q1)]2 < 0, f1γ =
−1
β3 < 0;

f2q2
=
u′′2 (q2)c′2(ρq2)− ρc′′2 (ρq2)u′2(q2)

[c′2(ρq2)]2 < 0, f2i =
γ

ρ(1 + ia)2β3 > 0, f2γ =
−1

ρ(1 + ia)β3 < 0;

f3q1
=
c′′1 (q1)q1 + c′1(q1)

β2 > 0, f3φ = −M−1 < 0;

f4q2
=
ρc′′2 (ρq2)q2 + c′2(ρq2)

β
> 0, f4a1

= −φ(1 + ia) < 0, f4φ = −(1 + ia)a1 < 0, f4ia = −φa1 < 0;

f5a1
= θ′(a1) > 0, f 5ia = 1 > 0, f5γ =

−R
ρ

< 0;

f1q2
= f1a1

= f1φ = f1ia = f2q1
= f2a1

= f2φ = f3q2
= f3a1

= f3ia = f4q1
= f5q1

= f5q2
= f5φ = 0.

We assume that R is large enough to satisfy

f4a1
f5ia − f4iaf5a1

= φ

[
a1θ

′(a1)−
γR

ρ
+θ(a1)

]
< 0,

− f2γ (f4a1
f5ia − f4iaf5a1

) + f5γf2iaf4a1
< 0.

We rewrite the equilibrium condition into the linear system:



f1q1
0 0 0 0

0 f2q2
0 0 f2ia

f3q1
0 0 f3φ 0

0 f4q2
f4a1

f4φ f4ia

0 0 f5a1
0 f5ia





dq1

dq2

da1

dφ

dia


= −



f1γdγ

f2γdγ

0

0

f5γdγ


.

Let ΛFA, ΛFA
1γ , ΛFA

2γ , ΛFA
3γ , ΛFA

4γ , ΛFA
5γ denote the determinants of the following
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matrices:

ΛFA =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1q1
0 0 0 0

0 f2q2
0 0 f2ia

f3q1
0 0 f3φ 0

0 f4q2
f4a1

f4φ f4ia

0 0 f5a1
0 f5ia

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,ΛFA

1γ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−f1γ 0 0 0 0

−f2γ f2q2
0 0 f2ia

0 0 0 f3φ 0

0 f4q2
f4a1

f4φ f4ia

−f5γ 0 f5a1
0 f5ia ,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

ΛFA
2γ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1q1
−f1γ 0 0 0

0 −f2γ 0 0 f2ia

f3q1
0 0 f3φ 0

0 0 f4a1
f4φ f4ia

0 −f5γ f5a1
0 f5ia

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,ΛFA

3γ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1q1
0 −f1γ 0 0

0 f2q2
−f2γ 0 f2ia

f3q1
0 0 f3φ 0

0 f4q2
0 f4φ f4ia

0 0 −f5γ 0 f5ia

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

ΛFA
4γ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1q1
0 0 −f1γ 0

0 f2q2
0 −f2γ f2ia

f3q1
0 0 0 0

0 f4q2
f4a1

0 f4ia

0 0 f5a1
−f5γ f5ia

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,ΛFA

5γ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1q1
0 0 0 −f1γ

0 f2q2
0 0 −f22γ

f3q1
0 0 f3φ 0

0 f4q2
f4a1

f4φ 0

0 0 f5a1
0 −f5γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

After calculating, we have

ΛFA = −f1q1
f3φ[f2q2

(f4a1
f5ia − f4iaf5a1

) + f4q2
f2iaf5a1

],

ΛFA
1γ = f1γf3φ[f2q2

(f4a1
f5ia − f4iaf5a1

) + f4q2
f2iaf5a1

],

ΛFA
2γ = −f1q1

f3φ[−f2γ (f4a1
f5ia − f4iaf5a1

) + f5γf2iaf4a1
] + f1γf3q1

f2iaf4φf5a1
,

ΛFA
3γ = −f1q1

f3φ[f2q2
f4iaf5γ − f4q2

(−f2γf5ia + f2iaf5γ )] + f1γf3q1
f4φf2q2

f5ia ,

ΛFA
4γ = −f3q1

f1γ [f2q2
(f4a1

f5ia − f4iaf5a1
) + f4q2

f2iaf5a1
],

ΛFA
5γ = f1q1

f3φ(f2q2
f4a1

f5γ + f2γf4q2
f5a1

)− f1γf3q1
f2q2

f4φf5a1
,

and ΛFA < 0, ΛFA
1γ > 0, ΛFA

2γ > 0, ΛFA
3γ is indeterminate, ΛFA

4γ > 0, ΛFA
5γ < 0. Therefore

∂q1
∂γ =

ΛFA
1γ

ΛFA < 0, ∂q2
∂γ =

ΛFA
2γ

ΛFA < 0, ∂φ
∂γ =

ΛFA
4γ

ΛFA < 0, ∂ia
∂γ =

ΛFA
5γ

ΛFA > 0. Since q2 decreases, we
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get φ(1 + ia)a1 decreases.

Observe that βa does not show in the equilibrium conditions. Thus, a change in

βa does not have real effects on the equilibrium prices and allocations.

Lemma 4

proof. Equation (35) and (36) are identical with λ1 = 0:

φ(ββa +λ2) = φ(1 + ia)(ρββa +λ2).

Suppose ρ(1 + ia) ≥ 1, we have

ββa +λ2 = (1 + ia)ρββa + (1 + ia)λ2 > ββa +λ2,

which is a contradiction. Thus, ρ(1 + ia) < 1.

Proposition 7

proof. In a partial annuitization equilibrium, (q1,q2, a1,φ, ia) satisfies proposition

6. Define

g1(q1,q2, a1,φ, ia;γ,βa) =
u′1(q1)
c′1(q1)

−
γ

β3 ;

g2(q1,q2, a1,φ, ia;γ,βa) =
ρu′2(q2)
c′2(ρq2)

−
γ

β3 + (1 + ρ)
βa
β

;

g3(q1,q2, a1,φ, ia;γ,βa) =
c′1(q1)q1

β2 +
c′2(ρq2)q2

β
−φ[M−1 + (1 + ia)a1];

g4(q1,q2, a1,φ, ia;γ,βa) = 1 + ia −
γR

ρ
+θ(a1);

g5(q1,q2, a1,φ, ia;γ,βa) = 1 + ia −
γ

γ − (1− ρ)β2βa
.
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Let gix denote ∂gi
∂x , where i = 1,2,3,4,5 and x = q1,q2, a1,φ, ia,γ,βa. We have

g1q1
=
u′′1 (q1)c′1(q1)− c′′1 (q1)u′1(q1)

[c′1(q1)]2 < 0, g1γ =
−1
β3 < 0;

g2q2
= ρ

u′′2 (q2)c′2(ρq2)− ρc′′2 (ρq2)u′2(q2)
[c′2(ρq2)]2 < 0, g2γ =

−1
β3 < 0, g2βa =

1− ρ
β

> 0;

g3q1
=
c′′1 (q1)q1 + c′1(q1)

β2 > 0, g3q2
=
ρc′′2 (ρq2)q2 + c′2(ρq2)

β
> 0, g3a1

= −φ(1 + ia) < 0,

g3φ = −[M−1 + (1 + ia)a1] < 0, g3ia = −φia < 0;

g4a1
= θ′(a1) > 0, g4ia = 1 > 0, g4γ =

−R
ρ

< 0;

g5ia = 1 > 0, g5γ =
−(1− ρ)β2βa

[γ − (1− ρ)β2βa]2 < 0, g5βa =
−(1− ρ)β2γ

[γ − (1− ρ)β2βa]2 < 0;

g1q2
= g1a1

= g1φ = g1ia = g2q1
= g2a1

= g2φ = g2ia = g4q1
= g4q2

= g4φ = g5q1
= g5q2

= g5a1
= g5φ = 0.

We rewrite the equilibrium condition into the linear system:



g1q1
0 0 0 0

0 g2q2
0 0 0

g3q1
g3q2

g3a1
g3φ g3ia

0 0 g4a1
0 g4ia

0 0 0 0 g5ia





dq1

dq2

da1

dφ

dia


= −



g1γdγ

g2γdγ + g2βadβa

0

g4γdγ

g5γdγ + g5βadβa


.

Let ΛPA, ΛPA
1γ , ΛPA

2γ , ΛPA
3γ , ΛPA

4γ , ΛPA
5γ , ΛPA

1βa
, ΛPA

2βa
, ΛPA

3βa
, ΛPA

4βa
, ΛPA

5βa
denote the deter-

minants of the following matrices:

ΛPA =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g1q1
0 0 0 0

0 g2q2
0 0 0

g3q1
g3q2

g3a1
g3φ g3ia

0 0 g4a1
0 1

0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,ΛPA

1γ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−g1γ 0 0 0 0

−g2γ g2q2
0 0 0

0 g3q2
g3a1

g3φ g3ia

−g4γ 0 g4a1
0 1

−g5γ 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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ΛPA
2γ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g1q1
−g1γ 0 0 0

0 −g2γ 0 0 0

g3q1
0 g3a1

g3φ g3ia

0 −g4γ g4a1
0 1

0 −g5γ 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,ΛPA

3γ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g1q1
0 −g1γ 0 0

0 g2q2
−g2γ 0 0

g3q1
g3q2

0 g3φ g3ia

0 0 −g4γ 0 1

0 0 −g5γ 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

ΛPA
4γ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g1q1
0 0 −g1γ 0

0 g2q2
0 −g2γ 0

g3q1
g3q2

g3a1
0 g3ia

0 0 g4a1
−g4γ 1

0 0 0 −g5γ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,ΛPA

5γ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g1q1
0 0 0 −g1γ

0 g2q2
0 0 −g2γ

g3q1
g3q2

g3a1
g3φ 0

0 0 g4a1
0 −g4γ

0 0 0 0 −g5γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

ΛPA
1βa

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0

−g2βa g2q2
0 0 0

0 g3q2
g3a1

g3φ g3ia

0 0 g4a1
0 1

−g5βa 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,ΛPA

2βa
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g1q1
0 0 0 0

0 −g2βa 0 0 0

g3q1
0 g3a1

g3φ g3ia

0 0 g4a1
0 1

0 −g5βa 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

ΛPA
3βa

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g1q1
0 0 0 0

0 g2q2
−g2βa 0 0

g3q1
g3q2

0 g3φ g3ia

0 0 0 0 1

0 0 −g5βa 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,ΛPA

4βa
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g1q1
0 0 0 0

0 g2q2
0 −g2βa 0

g3q1
g3q2

g3a1
0 g3ia

0 0 g4a1
0 1

0 0 0 −g5βa 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

ΛPA
5βa

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g1q1
0 0 0 0

0 g2q2
0 0 −g2βa

g3q1
g3q2

g3a1
g3φ 0

0 0 g4a1
0 0

0 0 0 0 −g5βa

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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After calculating, we have

ΛPA = −g1q1
g2q2

g3φg4a1
,

ΛPA
1γ = g1γg2q2

g3φg4a1
,

ΛPA
2γ = g2γg3φg1q1

g4a1
,

ΛPA
3γ = −g3φg1q1

g2q2
(g5γ − g4γ ),

ΛPA
4γ = g1q1

[g2q2
(−g3a1

g4γ − g3iag4a1
g5γ + g3a1

g5γ )− g3q2
g2γg4a1

]− g1γg3q1
g2q2

g4a1
,

ΛPA
5γ = g1q1

g3φg2q2
g4a1

g5γ ;

ΛPA
1βa

= 0,

ΛPA
2βa

= g1q1
g3φg2βag4a1

,

ΛPA
3βa

= −g3φg1q1
g2q2

g5βa ,

ΛPA
4βa

= g1q1
[g2q2

g5βa(g3a1
− g3iag4a1

)− g3q2
g2βag4a1

],

ΛPA
5βa

= g1q1
g3φg2q2

g4a1
g5βa .

We get ΛPA > 0, ΛPA
1γ < 0, ΛPA

2γ < 0, ΛPA
3γ > 0, ΛPA

4γ < 0, ΛPA
5γ < 0; ΛPA

1βa
= 0, ΛPA

2βa
> 0,

ΛPA
3βa

< 0, ΛPA
4βa

indeterminate, ΛPA
5βa

> 0.

Therefore ∂q1
∂γ =

ΛPA
1γ

ΛPA < 0, ∂q2
∂γ =

ΛPA
2γ

ΛPA < 0, ∂a1
∂γ =

ΛPA
3γ

ΛPA > 0, ∂φ
∂γ =

ΛPA
4γ

ΛPA < 0, ∂ia
∂γ =

ΛPA
5γ

ΛPA < 0;

∂q1
∂βa

=
ΛPA

1βa
ΛPA = 0, ∂q2

∂βa
=

ΛPA
2βa

ΛPA > 0, ∂a1
∂βa

=
ΛPA

3βa
ΛPA < 0, ∂ia

∂βa
=

ΛPA
5βa

ΛPA > 0.

We elaborate how to determine the sign of ΛPA
4γ because it is a little bit compli-

cated. It is sufficient to check that R
ρ −

(1−ρ)β2βa
[γ−(1−ρ)β2βa]2 ≥ 0. From the equilibrium

condition, we have γR
ρ −

γ
γ−(1−ρ)β2βa

− θ(a1) = 0. Differentiate by γ , we have R
ρ −

(1−ρ)β2βa
[γ−(1−ρ)β2βa]2 −θ′(a1)∂a1

∂γ = 0. Since θ′(a1)∂a1
∂γ ≥ 0, and then we get R

ρ −
(1−ρ)β2βa

[γ−(1−ρ)β2βa]2 >

0.

Proposition 9

proof. We know that λ1 = 0 and a1 = 0. From (37), (38), and (40), we obtain
u′2(q2)
c′2(ρq2) −

βa
β = γ−β2βa

ρβ3 < γ−ρβ2βa
ρβ3 . Suppose that βa = 0, we get γ

ρβ3 < γ
ρβ3 , which is a

contradiction. The pure cash economy could not be sustained under βa = 0.
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